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The geometries of 196 metal complexes containing MLS molecular fragments have been represented by 2352 and 1568 points, 
respectively, in two 12-dimensional spaces spanned by the symmetry coordinates for a trigonal bipyramid (TBP; T-space) and 
a square pyramid (SQP; S-space). This paper, the second of a three-part series, employs the multivariate statistical technique 
of cluster analysis in order to probe the distribution of these points in the 12-dimensional data spaces. Two techniques have been 
employed: nonhierarchical K-means clustering and hierarchical clustering employing Ward‘s criterion. K-means clustering shows 
T-space to be characterized by four clusters: one whose average, or archetype, is a TBP of D3,, symmetry, and three isometric 
clusters characterized by a slightly distorted ‘SQP“ of C, symmetry with trans-basal angles of 161 and 169O, respectively. S-Space 
is similarly characterized by four clusters: one with a ‘flattened” SQP (fSQP) archetype of C, symmetry with trans-basal angles 
of 17 1 O and an apical bond 0.7 A in excess of the standard M-L bond length, one characterized by an ‘elevated” SQP (eSQP) 
also of C, symmetry with trans-basal angles of 163O and whose apical bond is only 0.03 A in excess of its standard length, and 
two isometric clusters characterized by slightly distorted TBPs of C, symmetry. It is shown that the SQP cluster in T-space is 
divided into the fSQP and eSQP clusters in S-space and that, consequently, the results from the two data spaces are identical. 
In  all cases, the results are shown to be logically consistent with well-established chemical principles for these conformations. 
Hierarchical clustering, although not applied in as much detail as K-means clustering, yields essentially similar results. Structural 
characteristics for the archetypal conformations (TBP, EQP, eSQP) are presented and analyzed in the light of previous theoretical 
and less comprehensive empirical studies and are shown to be largely consistent with these. Univariate statistics for the TBP cluster 
suggest there is a large variance in the axial bonds and in the axial-equatorial angles, i.e. the pyramidality of the TBP-the 
‘umbrella” coordinate. The variance in the position of the apical ligand appears much greater for the fSQP than the eSQP. 
Bivariate statistics point to the principal importance of distortions along an SN2 coordinate for the TBP, with the Berry coordinate 
being slightly less clearly mapped. For both the fSQP and the eSQP the ‘glue” coordinateshortening of some bond distances 
at the expense of others-appears most significant, while only the eSQP maps the Berry coordinate; the fSQP fails to exhibit the 
distortions traditionally associated with this coordinate. 

Introduction 

In the previous paper of this series,l we have extracted structural 
data on 196 five-coordinate complexes of nickel, palladium, 
platinum, rhodium, and iridium, all with a d8 electron configu- 
ration. For each, the geometry of the central MLS fragment has 
been described by two sets of 12 nonredundant symmetry coor- 
dinates. These sets refer to the two most common idealized 
five-coordinate conformations, viz. the trigonal bipyramid (TBP) 
and the square-based (or rectangular) pyramid (SQP), respec- 
tively. We now regard each observed MLS molecular fragment 
as being represented by a point in a 12-dimensional (12-D) space 
spanned by the symmetry coordinates. There are two such spaces 
within which the representative points are distributed, depending 
on whether the observed structures are being related to an idealized 
TBP or to an idealized SQP. We have named these T-space and 
S-space, respectively. The origin of T-space represents an idealized 
MLS TBP with Djh symmetry whose M-L bond lengths equal their 
“idealized single-bond” values. The conceptualization of S-space 
follows similar lines, with the exception that an idealized MLs 
SQP with C, symmetry and “ideal” M-L bond lengths is not 
represented simply by a point, but rather by a continuous line in 
12-dimensional space. This line reflects the one degree of freedom 
that the C,, symmetry allows the values of the trans-basal angles 
in a SQP. 

In order to represent the symmetries of the deformation spaces, 
each observed conformation was transformed into its isometric 
partners by the application of the 12 and 8 symmetry operations 
of the D3h and c, point groups, respectively. As a consequence 
of this, the number of data points in T-space expands to 2352, 
while that in S-space becomes 1568. This artifact may be 
profitably exploited in the multivariate analysis that follows, since 
whatever symmetry is present in the data set must emerge also 
during the factor and cluster analysis, thus yielding an indicator 
as to the reliability of the results obtained. 

Univariate and bivariate statistics for the data distribution in 
T-space indicate the importance of distortions mimicking the SN2 
coordinate, the Berry coordinate, and a “constant-amount-of-glue” 
coordinate when the individual molecular geometries are regarded 
as distorted TBP. The “glue” coordinate is one which suggests 
that a constant amount of bonding is associated with the metal, 
as a result of which a lengthening of one bond brings about a 
shortening of others and vice versa. On the other hand, when the 
structures are considered as distorted SQP, the distribution in 
S-space appears to mimic distortions reminiscent of a reversible 
association coordinate a t  a square-planar center. 

The aim of the ensuing multidimensional analysis is essentially 
2-fold: (i) The distribution of the representative points in 12-D 
space will be probed by using cluster analysis. This serves to 
establish the clustering pattern (if any), i.e., to establish the 
essential or kernel conformations around which the observed 
structures cluster. (ii) The shape of these clusters will be examined 
by using factor analysis so as to establish the coordinates along 
which the data point clouds expand, Le., in order to map out those 
coordinates along which the conformations distort most signifi- 
cantly and along which the various clusters are joined to each 
other. In this paper, we will report the results of cluster analysis 
of the data distribution in T- and S-spaces, showing their im- 
plications for the “average” or “typical” molecular geometries of 
five-coordinate d8 metal complexes. 

In a previous paper,2 we have attempted to condense various 
publications dealing with factor and cluster analysis, illustrating 
their essential characteristics by a simplified outline of their 
philosophical and mathematical bases and by applying them to 
a simple, hypothetical three-dimensional database. We will 
therefore dispense with a detailed description of cluster analysis, 
except to point out that it is a technique which reveals the presence 
of clusters or clouds of data points, by grouping together similar 
points in the data space.3 
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Experimental Section and Results 
1. choice of Clustering Techniques. As pointed out elsewhere?J 

different clustering techniques and, above all, different linkage 
criteria can quite conceivably yield different analyses, and for this 
reason, one technique should always be supported by a second. 
In this case, we chose to probe the 12-D data distribution by means 
of, first, nonhierarchical or relocation clustering employing the 
K-means method and, second, hierarchical agglomerative clus- 
tering using Ward’s criterion. 

The choice of relocation clustering in the first instance was 
dictated by practical considerations. At the University of Cape 
Town (where much of this work was done) three statistical analysis 
packages offering clustering algorithms are available: CLUSTAN,~ 
SPSS,~ B M D P . ~  Of these, the latter seemed the most versatile and 
user friendly, offering four different cluster analysis programs, 
three of which are hierarchical. Output is in the form of a 
dendrogram and/or a distance (similarity) matrix, as well as 
several inter- and intracluster statistics. Unfortunately, there are 
no plotting routines associated with these programs, so that there 
is no option of visually displaying the results of the cluster analysis 
in any form other than a dendrogram or a distance matrix. These 
forms are quite inappropriate in our case, however, since the output 
for our data set comprising 2352 data points in T-space, for 
example, would run over 1600 pages in the case of the dendrogram 
or circa 350 pages in that of the matrix. 

BMDP program PKM, on the other hand, provides line printer 
plotting techniques that enable one to display the analysis results 
visually in a number of different ways. More importantly, though, 
program PKM employs nonhierarchical clustering techniques, 
specifically K-means clustering, and therefore produces no den- 
drogram or distance matrix. Instead, it partitions the data set 
into K clusters and then allocates each data point to the cluster 
whose center is closest to it a t  the completion of each run. PKM 
affords the user the opportunity of specifying either the number 
of clusters into which the data are to be sorted ( K )  or the cluster 
centrotypes around which the data points are to be clustered. 

2. Nonhierarchical (Rehxation) Cluster Analysis. (a) S i t y  
Measure and Robustness Criteria. In our case we decided to use 
unstandardized data with angle measurements scaled to radial 
displacements on the order of 1 A, as outlined in part 1 of this 
study.’ This in effect meant that we were choosing the Euclidean 
distance as a measure of similarity. Furthermore, two criteria 
were chosen for determining the “goodness” or “robustness” of 
a particular clustering. The first criterion derives from the sym- 
metry introduced into the expanded data set, and its basic as- 
sumption is that whatever symmetry is present in the data set must 
be reflected in the results of the cluster analysis, whose algorithm 
does not take explicit account of symmetry. Second, a cluster 
in T-space is considered robust if its members are similarly 
clustered together in S-space and vice versa. This latter criterion 
derives from the idea that conformations clustered together as, 
e.g., TBPs in T-space ought to be similarly def ied (and therefore 
clustered together) in S-space; otherwise, the classification must 
have been an artifact due to the clustering algorithm or the 
reference structure, rather than an inherently rigorous classifi- 
cation. 

(b) Initial Attempts. Since we had no a priori concept of the 
likely clustering pattern that our data set would exhibit in 12-D 
space, we had no prior knowledge of what the possible cluster 
centrotypes might be and by the same token could not estimate 
the number of clusters that might be formed. It was therefore 
necessary to begin with a hit-or-miss method, and first attempts 
centered around fitting a 12-cluster model to the data in T-space 
and an 8-cluster model around that in S-space. The rationale 
behind these attempts was that we expected at least that number 

(4) Wishart, D. CLUSTAN User’s Guide, The Cluran Projec?; University 
College: London, 1975. 

(5) Nie, N. H.; Hull, C. H.; Jenkins, J. G.; Steinbrenner, K.; Bent, D. H. 
Statistical Package for the Social Sciences, 2nd ed.; McGraw-Hill: 
New York, London, 1975. 

(6) Dixon, W. J., Ed. EMDP Srarisrical Sofrware, 1983 Printing with 
Additions; University of California Press: Berkeley, CA, 1983. 
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Figure 1. Diagram showing schematically the relationship between data 
distribution prior to expansion by the symmetry elements of the point 
group (a and c) and the number of clusters finally existing in the entirety 
of the parameter space (b and d). The point group used is C, and the 
numbers 1,2, 3, and 4 refer to the four asymmetric units comprising the 
hyperspace. They are here projected onto two dimensions. 

Table I. Inter- and Intracluster Statistics for T-Space‘ 
cluster T1 T2 T3 T4 
no. of membersb 548 548 708 548 
av size 0.885 0.885 0.727 0.885 
dist matrix T1 T2 T3 

T2 3.457 
T3 2.002 2.002 
T4 3.457 3.457 2.002 

‘Average size = average distance of cluster members from center of 
cluster (A). Distance matrix gives intercluster distances (A). bTotal 
number of members = 2352. 

of clusters as a consequence of our artificial data manipulation, 
whereby the original data sets were expanded 12- and 8-fold, 
respectively. 

However, judging by both the symmetry and the affiliation 
criteria, our early attempts at arriving at  some sensible clustering 
were leading nowhere. Values of K from 8 to 30 were used in 
PKM, but we were not able to find any coherent or symmetrical 
clustering pattern. It gradually became clear that the larger the 
value of K, the more complicated the picture became, and we soon 
realized that the assumption on which we were basing the higher 
K values was not necessarily correct. 

Consider, for example, the situation where the data points are 
quite densely clustered together approximately in the center of 
one asymmetric unit of a given multidimensional space, as shown 
in Figure la .  Then, when these points are subjected to the type 
of data expansion that we have applied in our case, they would 
be transformed into their isometric partners in the adjacent 
asymmetric units, as shown in Figure lb. In this case the final 
number of clusters formed in the entirety of the parameter space 
would be equal (or close) to the number of symmetry operations 
of the point group (four in this instance). However, where the 
original cluster is close to a symmetry element, as in Figure IC, 
subsequent expansion does not necessarily lead to a situation where 
the number of clusters formed is equal to the order of the point 
groups. In fact, the number of clusters may be considerably 
smaller, depending on the data distribution prior to expansion, 
as shown in Figure Id. 

In light of the above consideration it was decided to attempt 
to fit models involving smaller 6 s  to the data set, starting with 
K = 2 through to K = 10, and in the process to employ our two 
robustness criteria outlined earlier. Initially, the results were 
plotted by using the default mode of PKM, which plots bivariate 
scattergrams of numbers indicating cluster membership onto a 
plane through the centers of the three most populous clusters. In 
this way, a plot very similar to that depicted in Figure 2 emerged 
for the T-space data set with K = 4. Its rather obvious 3-fold 
symmetry immediately drew our attention. 

(c) T-Space. When we examined the result obtained for K = 
4 more closely, it became clear that a highly symmetric clustering 
pattern had emerged, which in fact mirrored the 3-fold symmetry 
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FACTOR 1 - 
Figure 2. Projection of T-space clusters onto the plane defined by the 
first two factors. Numbers indicate cluster affiliation, and asterisks 
indicate superposition of points belonging to different clusters. TI, T2, 
T3, and T4 are the notation used for the various clusters throughout this 
study. The 3-fold symmetry is slightly distorted by the line plotter. 

Table 11. Internal Angles (deg) of Cluster Centrotypes in T-Space*,” 
cluster 

angle T1 T2 T3 T4 
90 (7) 89 (6) 91, 89 (6) 94 (7) ._ 

OI3 94 (7) 89 (6) 90 (7) 89 (6) 
O14 89 (6) 89 (6) 90 (7) 94 (7) 

@23 99 (IO) 99 (IO) 119 (7) 161 (9) 
924 161 (9) 99 (IO) 119 (7) 99 (10) 
925 89 (6) 94 (7) 90 (7) 89 (6) 
934 99 (IO) 161 (9) 119 (7) 99 (IO) 
93s 94 (7) 89 (6) 90 (7) 89 (6) 
94s 89 (6) 89 (6) 90 (7) 94 (7) 
M 548 548 708 548 
N 137 137 59 137 

91s 169 (6) 169 (6) 174 (5) 169 (6) 

“Absolute conformations of TI, T2, and T4 are identical, but the 
ligand sites are permuted. Estimated standard deviations are given in 
parentheses. M is the number of cluster members; N is the number of 
refcodes in the cluster. See Figure 3 for diagrams depicting centrotype 
conformations and corresponding ligand permutations. 

of the D3* point group. The algorithm had yielded three identical 
but well-separated clusters (clusters number one, two and four) 
situated at  the comers of an equilateral triangle in the 12-D space, 
with the last, also well-separated cluster (number three) placed 
in the center of the triangle.’ These clusters will from now on 
be referred to as T1, T2, T4, and T3, respectively. Table I gives 
some inter- and intracluster statistics, while Figure 2 shows a 
projection of the four clusters onto the plane defined by the first 
two factors extracted from the T-space data set. 

The interest in obtaining an optimal clustering lies, of course, 
not merely in the number of clusters nor their symmetrical relation, 
but rather in finding the cluster centrotype or archetypal con- 
formation forming the center of the cluster, around which the 
observed molecular geometries aggregate. The program PKM 
allows the user to attach a label indicating cluster affiliation to 
the end of each observation’s record. This enables one to sub- 

(7) This 3-dimensional description of the arrangement of the clusters rel- 
ative to each other is meant merely to enable a visualization of the result, 
since such a description can obviously be of only very limited use in 
describing a 12-dimensional picture. 
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Figure 3. Interpretation of Figure 2, showing three possible distortions 
of the central TBP (corresponding to the T3 centrotype) into three dsQPs 
(corresponding to the T1, T2, and T4 centrotypes). 

sequently analyze individual clusters for such statistics as the mean 
and variance of the variablesfor that cluster. Using this option, 
we determined the average internal angles of the ML5 fragments 
composing the cluster centrotypes. These are given in Table 11. 

Quite clearly the T I ,  T2, and T4 centrotypes correspond to a 
slightly distorted SQP of C, symmetry with trans-basal angles 
of 169O and 16l0, while that of T3  corresponds to a TBP of D3h 
symmetry.* Moreover, the three SQP conformers coincide with 
the three possible SQPs that may be formed via the Berry 
mechanism from the TBP corresponding to the T 3  centrotype, 
as shown in Figure 3. According to this scheme, starting from 
the TBP in the center, either of three SQPs may potentially be 
formed, depending on which of the three equatorial ligand atoms 
(2, 3, or 4) acts as the pivot for the distortion, to subsequently 
become the apical atom in the SQP. 

It would appear, therefore, as if the observed conformations, 
when referenced to a perfect TBP, fall into two groups-those 
that are more trigonal bipyramidal in nature and those that tend 
more toward a square-pyramidal geometry. This is hardly sur- 
prising in view of what is known about five-coordination. What 
is more striking, though, is the fact that the observed molecular 
fragments have been sorted into these two groups (completely) 
automatically by the algorithm. 

The emergence of three archetypal SQPs corresponding to those 
expected when considering the possible distortions of the archetypal 
TBP begins to tempt the conclusion that the data map out the 
expected (and often empirically observed) reaction pathways 
whereby an archetypal TBP distorts into a SQP along a coordinate 
maintaining C, ~yrnmetry .~  In our case, the square-pyramidal 
conformer formed has preserved only the C, symmetry of the 
distortion coordinate and the D3h TBP, but has not yet assumed 
a C, geometry. This, however, may be the result of attempting 
to fit molecular geometries approaching C, symmetry into a D3* 
framework (since we are referring them to a TBP)-the highest 
symmetry that these compounds could exhibit under such cir- 
cumstances is C,, since there is no C, symmetry element present 
in the Djh point group 

(a) SSpace. The critical test of whether the clustering pattern 
observed in T-space is meaningful lies in how well this would 

(8) Naive averaging of the internal angles by the algorithm does not take 
into account the geometrical interdependence of the angles, and leads 
to average values that are geometrically inconsistent. An obvious ex- 
ample is T3, whose angles ought to be 90, 120, and 180°, but where all 
three equatorial angles are 1 1 9 O ,  even though all quatorialaxial angles 
are 90°. 

(9) Of course, the presence of precisely these three isomeric SQPs results 
from the data expansion, but this fact does not detract from the argu- 
ment developed subsequently. 
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Table 111. Inter- and Intracluster Statistics for S-Space' 
cluster s 1  s2 s 3  s 4  
no. of membersb 276 312 276 704 
av size 0.697 0.932 0.697 0.719 
dist matrix SI s 2  s 3  

S2 1.836 
S3 2.531 1.836 
S4 1.441 0.833 1.441 

Average size = average distance of cluster members from center of 
cluster (A). Distance matrix gives intercluster distances (A). bTotal 
number of members = 1568. 
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Figure 4. Projection of S-space clusters onto the plane defined by the 
first and fourth factors. Numbers indicate cluster affiliation, and as- 
terisks indicate superposition of points belonging to different clusters. S1, 
S2, S3, and S4 are the notation used for the respective clusters 
throughout this study. 

compare with the results of a similar analysis in S-space. For K 
= 4, the algorithm yields a symmetrical Y-shaped clustering 
pattern, with two identical clusters (clusters number one and three) 
situated at the tips of the bipronged fork, and two unequal clusters 
(numbers four and two) placed a t  the center and the bottom tip 
of the Y, respectively.' These clusters will henceforth be referred 
to as S1, S3, S4, and S2, respectively. The four clusters are well 
separated in comparison to their average size, except for clusters 
S2 and S4, where the distance between their centers is of the same 
order as the average size of the cluster. The reason for this will 
become clear in due course. Table I11 shows some relevant inter- 
and intracluster statistics. 

The Y-shaped arrangement of the four clusters is bestlo rep- 
resented by a plot in which the data are projected onto the plane 
composed by the first and fourth factors extracted from the S-space 
data set, as shown in Figure 4. This particular projection shows 
up only the 2-fold symmetry of the data space, and not the ex- 
pected 4-fold one. The reason for this is that the 4-fold symmetry 
is associated with the subspace made up of the second and third 
factor and consequently will not show up in a plot involving a lower 
factor. We have found, nevertheless, that this particular plot is 
the most informative and makes the most sense of the statistics 
in Table 111. 

Table IV gives the internal angles characterizing the various 
cluster centrotypes of S1, S2, S3, and S4. Although we do not 
intend at  this stage to comment on differences between the bond 

(10) In this case we have chosen the subspace containing the factor l/factor 
4 plane to represent the relative arrangement of the four clusters, since 
this plane is most suited to making sense of the 12-dimensional picture. 
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Table IV. Internal Aangles (deg) of Cluster Centrotypes in S-Spacea 
cluster 

anale s1 s2 s 3  s 4  

812  

81s 

9 2 s  

945 

813 
e14 

823 
824 

e34  835 

89 (6) 
92 (7) 
89 (6) 
174 ( 5 )  
115 (7) 
128 (9) 
89 (6) 
115 (7) 
92 (7) 
89 (6) 

90 (7) 89 (6) 89 ( 5 )  
92 (10) 115 (7) 97 (7) 
90 (7) 89 (6) 89 ( 5 )  

171 ( 5 )  128 (9) 163 (7) 
92 (10) 92 (7) 97 (7) 

171 ( 5 )  174 ( 5 )  163 (7) 
90 (7) 89 (6) 89 ( 5 )  
92 (10) 92 (7) 97 (7) 
92 (10) 115 (7) 97 (7) 
90 (7) 89 (6) 89 ( 5 )  

M 276 312 276 704 
N 69 39 69 88 

"Absolute conformations of S1 and S3 are identical, but the ligands 
are interchanged. Estimated standard deviations are given in par- 
entheses. M is the number of cluster members; N is the number of 
refcodes in the cluster. See Figure 5 for diagrams depicting centrotype 
conformations and corresponding ligand permutations. 

1 
s1 

Ij s2 

3+: 

4 

dTBP 
Figure 5. Interpretation of Figure 4, showing possible distortions of the 
BQP (corresponding to the S2 centrotype) through an eSQP (S4 cen- 
trotype) to either of two dTBPs (Sl and S3 centrotypes). 

lengths of the centrotypes, it is important to point out that there 
is a substantial difference in the apical bond distance between the 
SQPs characteristic of S2 and S4. (We have attempted to reflect 
this in the interpretive diagrams of Figure 5.) From Table IV, 
it can readily be seen that clusters S1 and S3 represent slightly 
distorted TBPs (dTBP) with C, symmetry that are marginally 
displaced along the Berry coordinate toward a SQP, as judged 
by the slight reduction in the axial angle and two of the equatorial 
angles and a concomitant opening of the remaining one. S 2  is 
characterized by a "flattened SQP" (henceforth fSQP) of C, 
symmetry with the central metal almost coplanar with the four 
basal ligand atoms and the apical ligand at a considerable distance. 
S4, on the other hand, is characterized by a more 'conventional 
elevated SQP" (henceforth eSQP) also of C, symmetry, whose 
metal, though, is clearly out of the basal plane (as judged by the 
trans-basal angles) and whose apical ligand is closer to the metal 
than was the case for the S2 centrotype. 

Here again, a clear picture that is logically consistent with 
well-established chemical principles emerges when these cluster 
centrotypes are viewed in the correct sequence, as shown in Figure 
5 .  Let us begin with the S2 centrotype E Q P ,  which could be 
viewed also as an "early intermediate" in the reversible addition 
of a fifth ligand to a square-planar, four-coordinate metal center. 
From here, there is a gradual progression to the eSQP (S4 cen- 
trotype) as the apical ligand moves closer toward the metal. 
Finally, the "true" eSQP intermediate has the option of distorting 
into either of two TBPs, depending on which of the trans-basal 
angles (& or 

Similar to the case with the C, SQP centrotypes in T-space, 
the TBP centrotypes of S1 and S3 do not attain the expected D3h 

opens up toward 180'. 
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symmetry. Again, this may well be the result of attempting to 
fit observed conformations approaching D3,, symmetry into a C, 
framework. The highest symmetry that the two would have in 
common is C,. 

(e) T-Space versus S-Space. At first glance, the compatibility 
of the results from T-space with those from S-space may not be 
obvious-after all, the one analysis gives us one archetypal TBP 
with D3h symmetry and three identical C, SQPs, while the second 
yields two C, TBPs and two nonidentical C4, SQPs. Notwith- 
standing this, the results are in fact similar. 

In essence what the algorithm has produced in both cases is 
a breakdown of the data set into two groups-those tending toward 
a TBP conformation and those tending toward the SQP. The 
apparent differences stem from the different symmetries of the 
data spaces. In T-space, whose symmetry is that of the D3h point 
group, geometries which tend toward the TBP will naturally 
aggregate around the archetypal D3h TBP at  the origin. On the 
other hand, those compounds whose geometries approach the SQP 
will need to cluster around an archetype whose symmetry is as 
close as possible to that of a perfect SQP (C,), while still being 
an element of the data space of D3h symmetry. Such an archetype 
would correspond, as it were, to an intersection between the sets 
of subgroups of the D3,, and C, point groups. Moreover, it would 
correspond to the highest symmetry subgroup that is an element 
of the set composing this intersection. This subgroup is the C, 
point group. Consequently, the square pyramidally distorted 
geometries aggregate about an archetypal C,, “square” pyramid 
instead of one with C, symmetry. Similar reasoning may be 
applied in explaining the absence of an archetypal D3,+ TBP in 
S-space-the symmetry of the data space simply does not allow 
for its existence. Instead, geometries approaching a TBP con- 
formation are forced to cluster around a C,, “TBP”. 

Proof for the above explanation may be obtained from a com- 
parison of the actual cluster membership in each of the two spaces. 
Before going on to do this, however, we need to briefly discuss 
the existence in S-space of two C4, SQP archetypes. An “ideal” 
SQP of C, symmetry may have both an apical bond length and 
identical trans-basal angles of any value. Theoretically, therefore, 
both “flattened” SQPs with large trans-basal angles and apical 
bond lengths and “elevated” SQPs with smaller angles and apical 
bond distances may exist. Clearly, objective descriptions of these 
two conformations would be extremely difficult to formulate- 
when is a SQP flattened and when is it elevated? Indeed, in our 
earlier study of nickel complexes,“ we found a smooth transition 
from the one to the other. We believed not only that this was 
the result of an absence of criteria differentiating between the 
fSQP and the eSQP but also that it mirrored the (most likely) 
rather small energetic differences between the two, leading to an 
even spread of observed geometries between the two conformations. 

Nevertheless, in this study, the algorithm employed managed 
to differentiate between the two splitting up the square pyramidally 
disposed structures into two clusters corresponding to the f sQP 
(S2) and the eSQP (S4). This speaks volumes for the power of 
this form of analysis. To enlarge on this point, let us view the 
observed structures as indeed representing various points on the 
Born-Oppenheimer energy hypersurface of the square-pyramidal 
ML5 fragment.l2 The two points representing the archetypal 
fsQP and eSQP are then very likely separated by only a very low 
energy “pass”-relative to each other they would represent no more 
than two rather flat “dimples” on the energy surface. Conse- 
quently, the spread of observed molecular structures around these 
points will be large and diffuse, with no clear boundaries estab- 
lished between the two distributions. Purely graphical techniques 
would consequently be unlikely to suffice as a means of differ- 
entiation. This point becomes clear when one compares the av- 
erage sizes of S2 and S4 (0.697 A and 0.932 A) with the distance 
between them (0.833 A)-the clouds of data points quite possibly 
diffuse into each other. Despite this, the statistical technique 

Auf der Heyde and Biirgi 

(1 1) Auf der Heyde, T. P. E.; Nassimbeni, L. R. Inorg. Chem. 1984, 23, 
4525-4532. 

(12) See the introduction to part 1 of this study.’ 

Table V. Analysis of Cluster Membership of Trigonal-Bipyramidal 
and Square-Pyramidal Clusters in T-Space and S-Space’ 

T-mace S-space 
T3 (TBP) (59) --- S1 (dTBP) (69) 

I 3 S3 (dTBP) 
T1 (dSQP) (137)},,,/” ~ 

T2 (dSQP) - S2 (fsQP) (39) 
T4 (dSQP) S 4  (eSQP) (88) 

“The only structures that are defined differently in the two data 
spaces are those indicated by the asterisk CMBPNI, CMPMNI, 
CSMRHC, DPPCRH, DPMCRHIO, EDCRCN, IPESNI, SALDNI, 
TMAGEP, and BEZPIF. Numbers in parentheses indicate number of 
refcodes for each cluster. 
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Figure 6. Projection of S-space clusters for K = 3 onto the plane defined 
by factor 1 and factor 4 extracted from S-space for K = 4. Numbers 
indicate cluster affiliation, and the asterisk indicates the superposition 
of points belonging to different clusters. 

employed in this case evidently succeeded in fixing the positions 
of the archetypal conformations somewhere in the center of the 
cloud of data points surrounding them. 

Let us continue now to comparing the actual cluster membership 
in the two data spaces. This is outlined schematically in Table 
V. As can be seen all CSD reference codes (refcodes)I3 in T3, 
representing a TBP in T-space, are found again in the identical 
clusters S1 and S3, representing the TBP in S-space. Similarly, 
almost all refcodes of the identical clusters TI ,  Tz, and T4 rep- 
resenting the SQP in T-space, are found in either S2 or S4, both 
representing the SQP in S-space. With only 10 exceptions, 
therefore, the observed molecular geometries are similarly classified 
in the two data spaces. In terms of both the criterion relating 
to the expected symmetry of the clustering pattern, and that of 
the cluster membership in the two spaces, we may therefore safely 
assume that the clusters formed a t  the K = 4 level are robust. 

(f) T-Space versus S-Space Continued. Although, as we have 
seen, the algorithm sorted the square pyramidally disposed 
structures into two groups, viz. the e$QP and fsQP, this was not 
a simple task, and indeed it needed 21 iterations to arrive at  the 
final clustering for K = 4 in S-space. This ought to be compared 
to only nine iterations that were needed to arrive at  the final 
clustering for K = 4 in T-space, in spite of the fact that T-space 
contains 784 more points for classification than does S-space. The 
difficulty of separating out the eSQPs from the fsQPs becomes 
even more obvious when one considers that only 11 iterations are 
needed to achieve an optimum clustering in S-space when K = 

(13) CSD = Cambridge Structural Database. See ref 1. 
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Table VI. Internal Angles (deg) of Cluster Centrotypes for K = 3 in 
S-Space“ 

s3 1 s32 s33 
89 (6) 

115 (8)  
89 (6) 

129 (9) 4 5  174 (5) 166 (7) 

O7.4 129 (IO) 166 (7) 174 (5)  
825 89 (6) 89 (6) 89 (6) 
034 114 (8) 96 (8) 92 (7) 
4 5  92 (7) 96 (8) 114 (8)  
045 89 (6) 89 (6) 89 (6) 

M 288 996 284 
N 66 131 65 

812 89 (6) 89 (6) 
e13 92 (7) 96 (8) 
O14 89 (6) 89 (6) 

O23 114 (8) 96 (8) 92 (7) 

“Estimated standard deviations are given in parentheses. M is the 
number of cluster members; N is the number of refcodes in the cluster. 

3. At this value of K ,  the algorithm collapses S2 (BQP)  and S4 
(eSQP) into one cluster containing 996 members, while retaining 
S1 and S3  (TBP) as two similar, but not quite identical, clusters 
with 288 and 284 members, respectively. Figure 6 shows a scatter 
plot of this clustering pattern projected onto the same plane as 
that in Figure 4, with which it should be compared. Table VI 
gives the internal angles corresponding to the centrotypes of the 
three clusters, which we will refer to as S31, S32, and S33. 

The very slight dissymmetry of this clustering is evidenced by 
the unequal number of cluster members for S31 and S33. These 
clusters are represented by distorted TBP centrotypes of C, 
symmetry that are almost isometric partners to each other, as are 
those of S1 and S3 when K = 4. Indeed the “typical” TBPs 
identified in S-space for K = 3 and K = 4 are very similar, as 
a comparison of Tables IV and VI show. Also the membership 
of S1 (dTBP) for K = 4 and S31 (dTBP) for K = 3 are almost 
identical, with the membership of the former being taken over 
into that of the latter except for only three compounds that are 
lost to S32 (SQP). The S32 centrotype corresponds to an eSQP 
with almost perfect C, symmetry.14 Its geometry can be seen 
to be intermediate between that of S2 (EQP) and S 4  (eSQP) for 
K = 4, as the comparison of Tables IV and VI will also show. 
Clearly, the reduction in the number of iterations from 21 (for 
K = 4) to 11 (for K = 3) has been achieved by the clustering 
together of the eSQPs and the E Q P s  into one cluster representing 
the average of the two. The cluster affiliations also reveal that 
the entire membership of clusters S2 and S 4  have been merged 
with three additional compounds being added from S1 (=S3). 

The dissymmetry in the clustering arises from the inclusion, 
on the one hand, of the compound identified by the refcode 
MOPAON15 in S31 (dTBP) and its exclusion, on the other hand, 
from S33 (ideally the isometric partner of $1)-it is instead 
classified with S32 (SQP). This unequal treatment most likely 
arises from a combination of a structural peculiarity of the 
molecule and a breakdown in symmetry brought about by the 
algorithm. MOPAON, which was already identified as an outlier 
in our previous examination of five-coordinate nickel,” contains 
two six-membered metal-ligand rings that are well-known to be 
sterically hindering in five-coordination. Its two largest internal 
angles a t  175 and 150° tend to suggest that its geometry is in- 
termediate between that of a TBP and a SQP, thereby perhaps 
explaining its inclusion as a TBP in S31 and as a SQP in S32. In 
fact, a t  0.959 and 0.960 A the representative point for MOPAON 
is almost equidistant from the centers of S31 (size = 0.713 A) 
and S32 (size = 0.851 A), respectively. 

Narskov-Lauritsen and Biirgi16 have examined how different 
hierarchical clustering algorithms deal with a highly symmetric 

(14) Although Table VI  seems to indicate perfect C, symmetry for S32, it 
does so only because the 8,;s and esd’s are rounded off. In fact the 
symmetry is only very nearly c,. 

(15) Orioli, P. L., Di Vaira, M .  J.  Chem. Sm. A 1968, 2078-2083. 
(16) Nsrskov-Lauritsen, L.; Blrgi, H.-B. J .  Comput. Chem. 1985, 6, 

21 6-228. 
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Figure 7. Projection of T-space clusters for K = 7 onto the plane defined 
by factor 1 and factor 2 extracted from T-space for K = 4. Numbers 
indicate cluster affiliation, and asterisks indicate the superposition of 
points belonging to different clusters. 

data distribution and have shown how some algorithms break down 
symmetry at certain points in the clustering process. In our case 
we are not dealing with a hierarchical algorithm, but there seems 
no reason, in a least-squares sense, why two symmetry equivalent 
points should be classified unequally, unless some peculiarity of 
the algorithm necessitates this. Although PKM employs non- 
hierarchical procedures, there clearly is an order, first, to the 
subdivision of the data space into K sections and, second, to the 
allocation of individual members to the K clusters. Consequently, 
the final classification will depend both on the initial assignment 
of compounds to clusters and on the order in which the structures 
are processed. Clearly the cluster named one by the program is 
first (in some nonhierarchical sense of the word) to have its 
approximate center fixed and be allocated its members, followed 
by that named two and so on. In this case, MOPAON is classified 
together with cluster one and then with cluster two, but not with 
cluster three. Short of analyzing the PKM flow chart, we can only 
speculate that MOPAONs close proximity to both TBP and SQP 
coupled to the order in which the PKM algorithm allocates cluster 
centers and members gives rise to the dissymmetry that emerges 
for K = 3.’’ MOPAON is represented by the asterisk in Figure 
6, which indicates a superposition of this compound with a member 
of cluster three. 

In order to examine the possibility of sorting eSQPs from EQPs 
in T-space, we attempted to fit a model with K = 7 to the data 
in T-space. The rationale behind this was that a partitioning of 
each isometric SQP cluster in T-space (Tl ,  T2, T4) into two 
clusters representative of the eSQP and BQP, respectively, ought 
to result in a total of seven clusters-one TBP, three isometric 
eSQPs and three isometric BQPs.  After 30 iterations (the 
maximum for PKM) the data had been sorted into seven clusters 
with, respectively, 393, 412, 134, 530, 194, 206, and 483 
members-clearly not symmetrical. However, a scatter plot of 
the cluster pattern onto the factor l/factor 2 plane, as in Figure 
2, exhibited the general features one would expect if T I ,  T2, and 
T4 in the latter figure were split in two. Encouraged by this, we 
devised an alternative strategy and decided to specify the seven 
initial cluster centers and then let PKM optimize them. As “seeds” 

(17) Willet has shown that different initial clusters and different orders of 
processing the data can indeed affect the final classification, although 
this is not necessarily the case. See: Willet, P. J.  Chem. InJ Compuf. 
Sci. 1984, 24, 29-32. 



3976 Inorganic Chemistry, Vol. 28, No. 21, 1989 Auf der Heyde and Biirgi 

which these structures were originally reported are examined, it 
becomes clear that the authors had great difficulty in describing 
accurately what the structures were. Consequently, these reports 
abound with descriptions such as “intermediate” and “distorted 
trigonal bipyramid”. Most of them were published before at- 
tempts, such as those by Muetterties19 and Holmes,20 to develop 
more precise conformational descriptions of five-coordinate com- 
plexes became more widely known. These methods incorporate 
the entire inner coordination polyhedron into establishing the 
degree of distortion, rather than subjectively focussing on the two 
largest angles (els and 624 in our numbering scheme) and com- 
paring these to some “ideal” values that they have in the “ideal” 
conformations. Applying Holmes’ method to the observed 
structures in order to determine the degree of distortion away from 
a TBP toward a SQP, as outlined in our earlier study” of nickel 
complexes, we find that this ranges from 36% in the case of 
IPESNII8g to 59% in that of CMBPNI.’” Clearly, the speculation 
that these compounds are truly intermediate between the two 
extreme conformations is correct, and this may afford a reason 
as to why they are classified once as SQP and another time as 
TBP. 

Interestingly, a close examination of the inner coordination 
sphere geometry reveals that six of these structures approximate 
very closely to C, or C, symmetry. Of course, this is hardly 
surprising, since we have been arguing all along that compounds 
intermediate between SQP and TBP are likely to manifest C, 
distortion, since the energetically most favored distortion coordinate 
is that maintaining C, symmetry. Nevertheless, it is gratifying 
to see this assertion supported by the evidence. Intriguingly, hers  
in his study18‘ of the square-pyramidal form of the pentacyano- 
nickelate anion [Ni(CN),I3- points out that “the observed Cz 
geometry is apparently not due to crystal-packing interactions but 
is rather an energy minimum of the free ion” (our emphasis). This 
statement is all the more impressive when one considers it in the 
context of its date of formulation: 1968. At this stage the Berry 
mechanism was still largely unrecognized in coordination chem- 
istry. Whether or not Ibers had it in mind when the paper was 
written is unclear, since nowhere in the publication is there mention 
of the Berry mechanism. 

We turn now to examining the cluster outliers-those structures 
that lie a t  greater than average distances from the center of the 
cluster with which they have been classified. Part of the output 
from PKM is a histogram displaying the distance from the cluster 
center to each observation. From these histograms, one can 
estimate the density or homogeneity of a given cluster and thereby 
identify cluster outliers. 

On the whole, the clusters formed in both T-space and S-space 
are fairly homogeneous, with very few outliers. Below, we examine 
separately each cluster, identifying outliers by their refcodes and 
indicating their distance (in A) from the cluster centers in par- 
entheses behind the refcode. In 11 cases the outliers lie more than 
twice the average sizez1 of the cluster away from its center. 

(i) S1 (dTBP) = S3; Size = 0.697 A. DPPCRH (1.568)18d 
and CSMRHC (1 .836)lSc are both compounds that have previ- 
ously (see Table V) been identified as having a geometry inter- 
mediate between a TBP and a SQP, thereby explaining why they 

Table VII. Internal Angles (deg) and Refined Cluster Centrotypes 
for K = 7 in T-Space‘ 

T72 (=T74, T16) 
89 ( 5 )  
95 (sj 
89 (5) 

167 (6) 
102 (9) 
155 (8)  
89 (5) 

102 (9) 
95 (6) 
89 ( 5 )  

340 224 
85 56 

Estimated standard deviations are given in parentheses. Angles for 
T74 and T76, and T’5 and T77, may be obtained by permuting T72 and 
T73, respectively, according to T2 and T4 in Figure 3. M is the num- 
ber of cluster members; N is the number of refcodes in the cluster. 

we chose (i) the DSk TBP centrotype of T3  for cluster one, (ii) 
the C, SQP centrotype of S4 (eSQP) for clusters two, four, and 
six, with the angles permuted so as to correspond to the three 
isometric SQPs shown in Figure 3, and (iii) the C4, centrotype 
of S 2  (fSQP) for clusters three, five, and seven, also permuted 
according to Figure 3. Input simply consisted of the values of 
the 12 symmetry coordinates for the D3h TBP evaluated for the 
various conformations listed in parts i-iii above. 

After just 10 iterations (only one more than for K = 4), the 
algorithm had managed to produce a symmetrical clustering 
pattern, of which a scatter plot onto the factor 1 /factor 2 plane 
of Figure 2 is shown in Figure 7. The refined centrotypes for 
the seven clusters T71, T72, T73, T74, T75, T76, and T77 are given 
in Table VII. 

An analysis of the cluster membership indicates that T72 
(eSQP) and T73 (RQP)  together contain the membership of T1 
(dSQP) with an additional four reference codes absorbed from 
T3. Obviously then, T1 has been split in two, and a comparison 
of Tables I1 and VI1 shows that T1 (dSQP for K = 4) is inter- 
mediate between T72 (eSQP) and T73 (RQP).  Not only has the 
separation of eSQPs from fSQPs been achieved in T-space but 
also it has been greatly facilitated by seeding the data set with 
approximate cluster centrotypes. 

Interestingly, the refined archetypal eSQP and fSQP again 
display only C, symmetry, in spite of the fact that the cluster 
seeds were of C, symmetry. This serves to substantiate the 
argument made earlier that the symmetry of the data space places 
restrictions on the symmetry to which a cluster centrotype may 
be refined. 

The more specific classification of compounds as either eSQP 
or fSQP for K = 7 in T-space does not correspond as well with 
that in S-space as does the broader breakdown for K = 4 in 
T-space into simply TBP and SQP. The membership of T72 
(eSQP) is different from that of S 4  (eSQP), as is that of T73 
(fSQP) from S2 (fSQP), with T73 (RQP)  losing 14 compounds 
to  S4 (eSQP), for example. As a result both of this and of the 
slight dissymmetry of the result for K = 3 for S-space, we would 
therefore argue that the results obtained for K = 4 are the best 
in terms of our two robustness criteria, even though K = 7 delivers 
slightly more detail in T-space than does K = 4. 

( 9 )  Outliers. We will here briefly examine both the group of 
10 compounds identified as divergent in Table V, as well as the 
cluster outliers, that is compounds which lie a t  a much greater 
than average distance from their cluster centrotypes. 

The ten refcodes listed in Table V represent observed molecular 
geometries that are classified as SQPs of C, symmetry in T-space, 
and as TBPs of C, symmetry in S-space. Accordingly one might 
expect these compounds to have a geometry that is intermediate 
between the TBP and the SQP. Indeed, when the papersI8 in 

(a) CMBPNI: Powell, H. M.; Watkin, D. J.; Wilford, J. B. J.  Chem. 
SOC. A 1971, 1803-1810. (b) CMPMNI; Jansen, J. C.; van Koning- 
sveld, H.; van Ooijen, J. A. C.; van Reedijk, J. Znorg. Chem. 1980,19, 
170-174. (c) CSMRHC: Mague, J.  T. Znorg. Chem. 1970, 9, 
1610-1618. (d) DPPCRH: Pignolet, L. H.; Doughty, D. H.; Nowicki, 
S .  C.; Casalnuovo, A. L. Znorg. Chem. 1980, 19, 2172-2177. (e) 
DPMCRHIO: Cowie, M. Znorg. Chem. 1979, 18, 286-292. (f) 
EDCRCN: Raymond, K. N.; Corfield, P. W. R.; Ibers, J. A. Znorg. 
Chem. 1968,7, 1362-1372. (g) IPESNI: Falth, L. Chem. Scr. 1976, 
9, 167-170. (h) SALDNI: Seleborg, M.; Holt, S. L.; Post, B. Znorg. 
Chem. 1971, I O ,  1501-1504. (i) TMAGEP Estes, E. D.; Hcdgson, 
D. J.  Znorg. Chem. 1973, 12, 2932-2935. Q) BEZPIF Kalck, P.; 
Bonnet, J.-J.; Poilblanc, R. J .  Am. Chem. Soc. 1982,104, 3069-3077. 
Muetterties, E. L.; Guggenberger, L. J.  J .  Am. Chem. Soc. 1974, 96, 
1748-1 756. 
Holmes, R. R. Acc. Chem. Res. 1979, 12, 257-265. 
The average size is defined as the average distance of all cluster mem- 
bers to its center. 
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are found on the fringes of this cluster. PEANIC (2.606)22a and 
PEANNI (2.741)22b are nickel carbonyl and nitrosyl complexes, 
respectively, with the tripodal ligand tris((2-diphenyl- 
phosphin0)ethyl)amine. They both exhibit extremely long axial 
interactions (when viewed as dTBP) between nickel and the ni- 
trogen of the base, with the metal displaced by almost l A from 
the equatorial plane. These distortions lead the authors to com- 
ment on a "tetrahedral distortion from TBP geometry ... main- 
taining C3, symmetry". Quite likely it is this C3, distortion that 
forces these compounds onto the outer edge of this cluster whose 
centrotype, after all, exhibits C, symmetry. 

(ii) S2 (fSQP); Size = 0.932 A. CHESNI (1.481)22c is a 
four-plus-one coordinate compound' with an extremely long (3.25 
A) apical interaction between nickel and the "dangling" oxygen 
atom of a bridging thiolate ligand in a hexameric complex. Its 
geometry consequently approximates a square planar one far more 
closely than it does a square-pyramidal geometry, thereby possibly 
accounting for its distance from the cluster center. CNPLPT 
(1 .398)ud is a cyanobis( 1 ,lo-phenanthroline)platinum(II) complex 
whose "cation possesses no elements of symmetry", thereby perhaps 
explaining why it is an outlier. 

(iii) S4 (eSQP); Size = 0.719 A. DMPAPDIO (1.606)22c 
contains a four-membered nickel-dithiophosphinato ring and the 
large and bulky 2,9-dimethyl-1 ,IO-phenanthroline ligand, both 
of which contribute toward a considerable distortion of the ge- 
ometry away from the SQP. This structure was also identified 
as an outlier in our previous study of nickel compounds," although 
in that case it was done merely on the basis of a graphical analysis. 
MPNBNI (1.451)22f is a dimer that similarly contains a four- 
membered ring leading to a geometry which is quite "asymmetric". 
FPHPRH (1.367)22g is also distorted toward "roughly C, 
symmetry" by the presence of seven atoms "within bonding 
distance", 

(iv) T1 (dSQP) = T2, T 4  Size = 0.885 A. CSMRHC (1.973) 
and DPPCRH (1.735) were previously identified as compounds 
intermediate between a TBP and a SQP and as outliers of cluster 
S1. Here they again occur as outliers, quite likely for the same 
reason as beforetheir  intermediacy. Other previous outliers that 
lie at large distances from the center of T1, presumably as a result 
of similar reasons as before, are FPHPRH (1.394), MPNBNI 
(1.424), DMPADP (1.668), and CHESNI (1.724). 

(v) T3 (TBP); Size = 0.727 A. PEANNI (2.605) and PEA- 
NIC (2.462) are again the furthest outliers by far, most likely 
as a result of their strong distortion away from a TBP to a tet- 
ra hedron. 

3. Hierarchical Cluster Analy~is.2~ The nature of the output 
from the hierarchical cluster analysis program of BMDP makes the 
processing of large data sets by this program impractical. As a 
result, we chose not to use this package but to follow, instead, the 
approach outlined by Norskov-Lauritsen and BurgP in employing 
the procedure CLUSTER incorporated in the Statistical Analysis 
System (SAS).24 Norskov-Lauritsen and BurgiI6 outline the 
application of Ward's method as implemented in the program 
CLUSTER to the analysis of eight torsion angles in the molecular 
fragment M(PPh!)2. They describe how the history of the 
clustering process is documented by a number of descriptors that 
enable the user to decide when an optimal number of clusters has 

C 

T 
E 
R i l l :  

(22) (a) PEANIC: Ghilardi, C. A.; Sabatini, A.; Sacconi, L. Inorg. Chem. 
1976. 15. 2763-2767. fb) PEANNI: Di Vaira. M.: Ghilardi. C. A.: 

1 

Sacconi, L. Inorg. Chem. 1976,15, 1555-1561. (c) CHESNI: 'Gould; 
R. 0.; Harding, M. M. J. Chem. Soc. A 1970,875-881. (d) CNPLPT: 
Wernberg, 0.; Hazell, A. J. Chem. Soc., Dalton Trans. 1980,973-978. 
(e) DMPADPIO Shetty, P. S.; Fernando, Q. J. Am. Chem. Soc. 1970, 
92,3964-3969. (0 MPNBNI: Butcher, R. J.; Sinn, E. Inorg. Chem. 
1977,16,2334-2343. (8) FPHPRH: Hughes, R. P.; Krishnamachari, 
N.; Lock, C. J. L.; Powell, J.; Turner, G. Inorg. Chem. 1977, 16, 

(23) This part of the analysis was performed during a brief stay by T.A.d.H. 
at the University of Berne. The time available did not permit a full 
analysis. Nevertheless, the results obtained adequately substantiate 
those obtained from relocation clustering. 

(24) (a) SAS User's Guide: Statistics, 1982 ed.; SAS Institute Inc.: Cary, 
NC, 1982. (b) SAS User's Guide: Basics, 1982 ed.; SAS Institute Inc.: 
Cary, NC, 1982. 
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Figure 8. Cubic clustering criterion plotted against number of clusters 
in T-space. 
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Figure 9. Cubic clustering criterion plotted against number of clusters 
in S-space. 

been formed in the agglomerative process, Le. when the best 
compromise between the number of clusters-which should be 
small-and their information content-which should be l a r g e h a s  
been reached. 

The descriptor that they found "particularly useful for esti- 
mating the optimal number of clusters" is the cubic clustering 
criterion (CCC).Nb*2s This criterion rests on an approximation 
to the expected value of the within-cluster sum of squares, which 
in turn assumes that "a uniform distribution on a hyperrectangle 
will be divided into clusters shaped roughly like hypercubes". It 
is pointed out in ref 24 that for certain large samples this as- 
sumption gives very accurate results. The exact definition of the 
CCC is "very complicated",'6 but essentially it is a statistical 
measure that when plotted against the number of clusters formed, 
can indicate an optimum number of clusters by a peak in the 
graph. 

We will substantiate the results of the relocation cluster analysis 
by illustrating the essential outcome of the application of Ward's 
method to our data set. 

(a) Similarity Measure and Robwtaess Criteria. We chose the 
Euclidean distance in 12-D space as our similarity measure, in 
keeping with the approach adopted in the relocation cluster 
analysis. As an indicator of robustness we decided to rely on the 
CCC in this case, since time constraints prevented a full analysis 
of the cluster membership or the symmetry of the result. 

(b) Results. Figures 8 and 9 represent plots of the CCC against 
the number of clusters formed for T-space and S-space, respec- 
tively. Pointers to the correct use of the CCC cited by ref 24b 
are as follows: (i) peaks on the plot with CCC greater than 2 

y 
e 

WNKR Of CLUSTERS 

~~ ~~~ 

(25) Searle, W .  S. SAS Technical Report: A-108; SAS Institute Inc.: Cary, 
NC, 1983. 
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and his data appear to agree with this assertion. Table VI11 
outlines the cluster membership in T-space and S-space, dissected 
according to the metal. It can be seen that in both cases ap- 
proximately twice as many compounds are classified as SQP than 
are TBP. When the individual metals are regarded, it becomes 
obvious that this tendency is more pronounced for the second- and 
third-row elements, which are likely to be low-spin, than it is for 
the nickel compounds. Without more knowledge about the spin 
states of the complexes, however, little can be definitely said about 
the conformational preferences of different spin states. 

Table VI11 also suggests that the majority of palladium and 
platinum compounds adopt a more flattened square-pyramidal 
conformation, whereas in the case of rhodium and iridium the 
tendency is more dramatically toward an eSQP. Whether this 
difference in behavior between the two groups of compounds is 
related to some inherent difference between the two groups of 
metals or results, instead, from geometric constraints imposed by 
different sets of ligands needs to be further investigated. 

There has been much discussion concerning the value of the 
trans-basal angles (els and 024) io an “ideal” SQP. It is generally 
agreed, however, that these will depend on the d-electron con- 
figuration.2629 Clearly, no such thing as an ”ideal” SQP exists; 
instead, there exists a range of square pyramidally disposed 
conformations ranging from a fSQP to an eSQP. We shall 
consequently compare the averages of both types of SQP, as well 
as that of an “average” SQP (Le. one composed of a merger of 
the fSQP and the eSQP) with the empirical results listed by 
H o l m e ~ ~ ~ , ~ ~  and the predictions of Rossi and Hoffmann.28 For 
SQP nickel complexes, Holmes observed that the trans-basal angle 
for high-spin complexes is 16l0, while that for low-spin complexes 
is 173’. Rossi and Hoffmann predicted that this angle would be 
164’. Both results fall in the range of values given in Tables 11, 
IV, VI, and VII. 

Finally, Table IX lists the average bond distance increments 
did5 for the various clusters (and it should be seen as an extension 
of Tables I1 and IV). The e.s.d.’s are large, and the results should 
thus be treated cautiously, but they nevertheless suggest interesting 
trends. For example, axial bonds in a TBP appear to be longer 
than equatorial ones, while apical bonds in both SQPs are longer 
than the basal ones. The latter result is in line with Holmes’ 
observations and Rossi and Hoffmann’s predictions; the former 
is not. Most interesting, however, is the difference in the length 
of the apical bonds in the fSQP and eSQP, with that in the E Q P  
being -23 times longer (tending toward four-plus-one coordinate). 

5. Intracluster Statistics. Now that cluster analysis has shown 
the essential distribution of the data in 12-dimensional space, it 
might be instructive to investigate intracluster univariate and 
bivariate statistics in a manner similar to that used for T- and 
S-spaces overall in the previous paper of this series.l 

(a) Univariate Statistics. T-Space. Table X gives the standard 
deviations, variances, and percentage variance for each symmetry 
coordinate in clusters T1 (dSQP) and T3 (TBP), as well as the 
percentage of the total variance in, respectively, bond increment 
and bond angle (linear and angular) symmetry coordinates ex- 
plicable by each. T3 is shown to have a large variance in the bond 
increment coordinates SI and S,, which can be seen to imply large 
variances in the length of the axial bonds from a graphic repre- 
sentation of symmetry  coordinate^.^^ A similarly large variance 
in S4 (the “umbrella coordinate”) clearly implies a large variation 
in the degree of pyramidality of the fragment composed of one 
axial and all three equatorial ligands, i.e. a large variation in the 
out-of-plane displacement of the metal atom from the equatorial 
plane. This variance therefore again hints a t  the importance of 
SN2-type distortions in the TBP. 

For the typical C, SQP represented by T1 there is a large 
variation in the length of the apical bond (S5& and in the position 
of the apical ligand with respect to the other four ligands (&a, 

Table VIII. Cluster Membership Broken Up According to Metals’ 
Ni Pd Pt Rh Ir totl. 

T1 (dSQP) 68 15 8 23 23 137 

SI (dTBP) 50 0 2 8 9 69 

S4 (eSQP) 41 3 2 20 22 88 

T3 (TBP) 45 0 1 5 8 59 

S2 (fSQP) 22 12 5 0 0 39 

“Recall that T1 = T2 = T4 and S1 = S3. 

or 3 indicate good clusterings; (ii) very distinct nonhierarchical 
clusters show a sharp rise before the peak followed by a gradual 
decline; (iii) peaks with the CCC between 0 and 2 indicate possible 
clusters. 

An inspection of the result obtained for T-space reveals that 
the most dramatic peak by far occurs a t  four clusters. This, of 
course, coincides exactly with the result obtained by relocation 
clustering. The value of the CCC (=32) indicates a very robust 
result, and the sharp rise up to the peak suggests that the clusters 
are very distinct and of a nonhierarchical nature, a t  least from 
the level of 12 clusters upward. Far less significant “peaks” occur 
at 12 and 29 clusters-these presumably result from the clustering 
together of clouds of isometric conformations that lie close to each 
other in parameter space (possibly along symmetry elements). Of 
interest is the lack of any peak at  seven clusters, a result that is 
not in agreement with that obtained previously, where a solution 
with seven clusters was shown to be feasible. 

The result for S-space, shown in Figure 9, is similarly en- 
couraging. The main peak at  four clusters clearly coincides with 
the result obtained by relocation clustering, while the (only) 
alternative at three clusters is synonymous with the results obtained 
for K = 3, where the clusters corresponding to the eSQP (S4) and 
the fSQP (S2) of the K = 4 result are merged into one. Inter- 
estingly, both the much gentler rise to the peak (as opposed to 
that in Figure 8) as well as the overall greater smoothness of the 
graph tend to suggest that the clusters in S-space lie much closer 
together than do those in T-space, resulting in less dramatic 
increases in homogeneity as they are successively clustered to- 
gether. The lower value of the CCC (=10.5) also seems to indicate 
a reduced robustness in the clustering. The closer proximity of 
the clusters in S-space relative to that in T-space was previously 
indicated during the discussion concerning the K-mean algorithms’ 
ability to separate the eSQPs from the fSQPs, where the suggestion 
was made that these two clusters might diffuse into one another. 

4. Analysis of Structural Results. We will here extract further 
structural information from the results of K-Means relocation 
clustering, having shown above that the results obtained from this 
method and those yielded by hierarchical cluster analysis using 
Ward’s method are very nearly identical. The structure of five- 
coordinate transition-metal complexes, in particular those ap- 
proaching SQP conformation, has been the subject of much 
discussion and work. One of the more recent comprehensive 
reviews is that written by Holmes.26 In it is an exhaustive overview 
of his work specifically with phosphorus and other main-group- 
element compounds, as well as a compilation of studies in five- 
coordinate transition-metal complexes and a structural analysis 
of these compounds using his dihedral angle technique. His 
database for nickel and platinum is rather small, though, com- 
prising only 22 nickel and 4 platinum compounds with no other 
complexes containing d8 metals. In his review, as well as in a 
subsequent paper,27 he compares the observed structures to ones 
predicted by Rossi and Hoffmann on the basis of extended Huckel 
studies on the PtLs3- system28 and also offers interpretations of 
the observed conformations in terms of nonbonded repulsions 
between d-orbital electron density and bond electron density. 
On the basis of an angular overlap model, he suggests that 

high-spin d8 compounds would favor a more SQP conformation, 

(26) Holmes, R. R. Prog. Inorg. Chem. 1984, 32, 119-235. 
(27) Holmes, R. R. J .  Am. Chem. SOC. 1984, 106, 3745-3750. 
(28) Rossi, A. R.; Hoffmann, R. Inorg. Chem. 1975, 14, 365-374. 

(29) (a) Burdett, J. K. Adv. Inorg. Chem. Radiochem. 1978, 21, 113-134. 
(b) Gillespie, R. J. J .  Chem. SOC. 1963, 4679-4685. 

(30) The previous paper in this series’ details the symmetry coordinates for 
the TBP and SQP and gives a graphic interpretation of these. 
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Table IX. Average Bond Distance Increments (A) for the Clusters Indicated“ 
T1 (dSQP) T3 (TBP) S1 (dTBP) S2 (fSQP) S4 (6QP) 
-0.049 (1 16) 0.030 (205) 0.024 (192) -0.165 (82) -0.008 (88) 
-0.057 (106) -0.025 (83) -0,032 (83) -0.165 (82) 4.008 (88) 

dl 
d2 

d5 -0.049 (1 16) 0.030 (205) 0.024 (192) -0.165 (82) -0.008 (88) 

d3 0.219 (353) -0.025 (83) 0.001 (88) 0.692 (298) 0.030 (125) 
d4 -0.057 (106) -0.025 (83) -0,032 (83) -0.165 (82) -0.008 (88) 

“TI = T2 = T4 and S1 = S3. Estimated standard deviations are given in parentheses. 

Table X. Standard Deviations (a), Variances (aZ), Percentage of Variance in Linear Coordinates (% LV), and Percentage of Variance in 
Angular Symmetry Coordinates (% AV) for Clusters T1 and T3 in T-Space 

T1 (dSQP) T3 (TBP) 
0, A a2, A2 % LV % AV 0, A 2, A2 % LV % AV 
0.150 0.022 12.8 0.191 0.036 34.6 
0.140 0.020 11.2 0.084 0.007 6.8 

s3 0.067 0.004 2.6 0.219 0.048 45.8 
s4 0.245 0.060 8.2 0.534 0.286 47.2 
s5, 0.348 0.121 69.5 0.082 0.007 6.4 
S5b 0.082 0.007 3.9 0.082 0.007 6.4 

SI 
SZ 

S6a 0.432 0.187 25.6 0.331 0.1 10 18.1 
s6b 0.440 0.193 26.5 0.331 0.1 10 18.1 

&a 0.3 16 0.100 13.7 0.142 0.020 3.3 
s8b 0.309 0.096 13.1 0.142 0.020 3.3 

S7a 0.236 0.056 7.6 0.175 0.03 1 5.0 
S7b 0.196 0.039 5.3 0.175 0.03 1 5.0 

Table XI. Standard Deviations (a), Variances (d), Percentage of Variance in Linear Coordinates (36 LV) and Percentage of Variance in 
Angular Coordinates (% AV) for Clusters S1, S2, and S4 

S1 (dTBP) S2 (fSQP) S4 (6QP)  
a ,A  $,AZ %LV %AV cr,A $,A2 %LV %AV a , A  $,AZ %LV %AV 

St 0.087 0.008 7.98 0.298 0.089 76.8 0.125 0.016 33.3 
0.133 
0.248 
0.148 
0.317 
0.151 
0.203 
0.084 
0.345 
0.306 
0.311 
0.311 

0.018 
0.061 
0.022 
0.101 
0.023 
0.041 
0.007 
0.119 
0.094 
0.097 
0.097 

18.6 

22.8 
10.4 

17.0 
3.9 

43.2 
7.5 

20.1 
15.8 
16.4 
16.4 

0.116 
0.216 
0.054 
0.209 
0.41 1 
0.072 
0.072 
0.489 
0.489 
0.205 
0.205 

0.014 
0.046 
0.003 
0.044 
0.169 
0.005 
0.005 
0.239 
0.239 
0.042 
0.042 

Sa). This is the interpretation when the D3h symmetry coordinates 
are referred to or “fitted” to a SQP.3’ Note that the symmetry 
of T-space is reflected in the variances of the degenerate coor- 
dinates (S5-S8) for cluster T3; it is not reflected in the variances 
of T1 since this cluster does not conform to the full symmetry of 
D3h data space, but only to C,. 

S-Space. Table XI illustrates univariate statistics for clusters 
S1, S2, and S4 in S-space. Here, in converse to the situation in 
T-space, the variances in S1 (dTBP) indicate that this cluster does 
not conform to the symmetry (C,) of the data space. In this case, 
the large variance in S,, implies a large variation in the axial bonds 
of the distorted TBP, while that in S5 reflects the range of 
trans-basal angles available to the C, dTBP. The variance of 
S,  suggests a large degree of freedom in the angular orientation 
of the pivot atom. These interpretations can be recognized from 
the graphic representation of the C, symmetry coordinates re- 
ferred to a TBP.30 For the flattened SQP a large variation in the 
apical bond distance becomes apparent from SI, while the vari- 
ances in Sa,, Ssb, and S6 suggest a large flexibility in the position 
of the apical ligand; Le., this ligand is not fixed to lying on an 
imaginary perpendicular line drawn through the center of the basal 
plane of the BQP. For the eSQP (S4) the bond distance variance 
is not limited mainly to the apical distance, as was the case for 
the fSQP, but is spread more evenly over all five bonds; the 
majority is still associated with the apical bond, though, since Sz 

(31) This can be done by referring to the graphic interpretation of the D3b 
symmetry coordinates shown in the previous paper’ and regarding them 
as projected onto a SQP framework, rather than a TBP framework. 
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2.5 
5.7 

5.3 
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4.5 
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29.1 
29.1 
5.1 
5.1 

0.118 
0.296 
0.078 
0.278 
0.260 
0.075 
0.075 
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0.319 
0.219 
0.219 

0.0 14 
0.087 
0.006 
0.077 
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0.006 
0.006 
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0.102 
0.048 
0.048 

29.8 

12.9 
16.4 
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12.7 

12.0 
12.0 
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9.1 

t 
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Figure 10. Graphical representation of distortions corresponding to 
correlated pairs of symmetry coordinates. The first two are from cluster 
T1 (dSQP) and the third is from cluster T3 (TBP). Where the corre- 
lation is negative, the inverse of one coordinate has been drawn, e.g. -SI. 

comprises all four basal bonds while SI comprises only the apical 
bond. All symmetry coordinates contribute approximately equally 
to the overall variance. 
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Table XII. Correlation Matrices for Symmetry Coordinates in Clusters TI (dSQP) and T3 (TBP)’ 
All A2)1 E’ E” 

SI s2 s3 s4 s5a s5b s6a S 6 b  Sh S 7 b  sua 

1 .oo 
-0.6 1 
0.00 
0.00 

-0.8 1 
0.00 

-0.47 
0.00 
0.33 
0.00 
0.00 
0.00 

1 .oo 
-0.26 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
0.00 
0.00 
0.82 
0.00 
0.47 
0.00 

-0.45 
0.00 
0.00 
0.00 

1 .oo 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
-0.21 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

-0.05 
0.00 

1 .oo 
-0.84 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.28 
0.00 

1 .oo 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

Cluster T1 

1 .oo 
0.00 1 .oo 
0.53 0.00 
0.00 -0.02 

-0.47 0.00 
0.00 -0.26 
0.00 0.00 
0.00 0.00 

Cluster T3 

1 .oo 
0.00 1 .oo 
0.25 0.00 
0.00 0.25 

- 0 . 1  1 0.00 
0.00 - 0 . 1 1  
0.00 0.00 
0.00 0.00 

‘Symmetry species to which the coordinates belong are also shown. 

(b) Bivariate Statistics. T-Space. The correlation matrices for 
clusters T1 (dSQP) and T3 (TBP) are shown in Table XII. The 
method, introduced in the previous paper,’ of summing the dis- 
tortions representing the individual symmetry coordinates in a 
correlated pair in order to obtain the correlated distortion, will 
be applied here again in an interpretation of the intracluster 
correlation data. For T1 (dSQP) two major correlations appear: 
between SI and Ss, ( r  = -0.812) and between S2 and Ss, ( r  = 
0.8 19). The first corresponds to the departure of the apical ligand 
and the concomitant shrinking of the basal bonds in the dSQP 
(or the reverse process). This is represented in Figure 10 where 
the D3h symmetry coordinates are referred to a SQP3’ to facilitate 
the interpretation of the data. In other words, this represents the 
‘constant-amount-of-glue” coordinate already identified for T- 
space overall.’ The second major correlation, also graphically 
illustrated in Figure 10, essentially indicates that there is a large 
degree of freedom in the position of the apical ligand, a charac- 
teristic of square pyramidally disposed conformations that we have 
repeatedly encountered. These two correlations are each able to 
account for -80% of the variance in T1. Note, also, that sym- 
metry coordinates are correlated across different symmetry 
species; Le., irreducible representations are mixed. This arises 
out of the inability of T1 to conform to the full symmetry of the 
Djh  data space. 

For T3 (TBP), however, the correlations occur in blocks ac- 
cording to their symmetry, and there is no mixing of different 
irreducible representations. Only one major contribution ( r  = 
-0.84), accounting for 70% of the sample variance in T3, char- 
acterizes the distribution of data in this cluster. This correlation 
(between S3 and S,) is graphically represented in Figure 10, and 
it mirrors the sN2 coordinate. 

Three major correlated distortions, described as an SN2 co- 
ordinate, a Berry coordinate, and a glue coordinate (for short) 
were identified for the data distribution in T-space overall. It 
would.appear as if one has been “lost” during the subdivision of 
T-space into the TBP and SQP clusters; the glue coordinate has 
been seen to be associated with T1 (dSQP), while the SN2 is 
associated with T3 (TBP). However, in the case of the Berry 
coordinate, both clusters have retained a small component of it, 
thereby reducing its importance from that for T-space overall. 
T1 and T3 show correlations with coefficients of only 0.53 and 
0.25, respectively, between coordinates S,, and This is a 

1 .oo 
0.00 

-0.29 
0.00 
0.00 
0.00 

1 .oo 
0.00 
0.36 
0.00 
0.00 
0.00 

t’ 

1 .oo 
0.00 

-0.29 
0.00 
0.00 

1 .oo 
0.00 
0.36 
0.00 
0.00 

1 .oo 
0.00 1.00 
0.00 0.00 1.00 
0.00 0.00 0.00 1.00 

1 .oo 
0.00 1.00 
0.00 0.00 1.00 
0.00 0.00 0.00 1.00 

I 

s4 * s 5 &  

Figure 1 I .  Graphical representation of distortions corresponding to 
correlated pairs of symmetry coordinates. Where the correlation is 
negative, the inverse of one coordinate has becn drawn, e.g. -Sr. Cor- 
relations are from clusters S1, S2, and S4 and are discussed in the text. 

consequence of the clustering that has separated the data into those 
close to D3h symmetry and those distorted along the Berry co- 
ordinate toward C, symmetry. 

SSpace. Table XI11 shows the correlation matrices for clusters 
S1, S2, and S4. As was the case previously with TI ,  cluster S1 
(dTBP) shows correlations between coordinates of different 
symmetry species, these presumably arising out of an inability 
of this cluster to conform to the symmetry of the data space. The 
picture is complex, with a number of correlations above 0.50. First, 
we will consider the correlations of S,, with S,,, S,, with coef- 
ficients of -0.70, -0.76, and -0 .76,  respectively. A graphic in- 
terpretation of these correlations, illustrated in Figure 11, shows 
that they accord to the SN2 coordinate at a TBP in c, parameter 
space, with all three correlations together presenting a more co- 
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Table XIII. Correlation Matrices for Symmetry Coordinates in Clusters S1 (dTBP), S2 (fSQP), and S4 (eSQP)." 
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1 .oo 
-0.29 

0.07 
-0.24 
-0.19 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
-0.60 

0.26 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
-0.61 
0.13 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
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0.65 
0.29 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
0.06 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
-0.09 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
-0.25 
-0.57 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
0.39 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
-0.35 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 .oo 
0.40 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

Cluster S1 

1 .oo 
0.00 1.00 
0.00 0.00 1 .oo 
0.00 0.00 0.00 
0.00 0.00 -0.70 
0.00 0.00 0.00 
0.00 0.00 -0.76 
0.00 0.00 -0.76 

Cluster S2 

1 .oo 
0.00 1.00 
0.00 0.00 1 .oo 
0.00 0.00 0.00 
0.00 0.00 -0.28 
0.00 0.00 0.00 
0.00 0.00 0.03 
0.00 0.00 0.03 

Cluster S4 

1.00 
0.00 1.00 
0.00 0.00 1.00 
0.00 0.00 0.00 
0.00 0.00 0.12 
0.00 0.00 0.00 
0.00 0.00 -0.22 
0.00 0.00 -0.22 

Symmetry species to which the coordinates belong are also shown. 

herent picture than just the correlation between STa and either 
one of the others. Related to these are the positive correlations 
between Sga and S, and Sgb Another characteristic, the variance 
in the axial bonds, is mirrored in the correlation between S2 and 
S4 ( r  = 0.647). This correlated distortion is also graphically 
illustrated in Figure 11. Finally, lest it be last again, a component 
of the Berry coordinate is present in the correlation ( r  = 0.393) 
between S4 and S5. 

For both S2 (fSQP) and S 4  (eSQP) the major correlation is 
that between SI and S2 with coefficients of -0.602 and -0.61 1, 
respectively. This corresponds to the glue coordinate or, alter- 
natively, can also be interpreted in terms of a reversible elimination 
from the apical position of a SQP, with a concomitant shortening 
of the basal angles or vice versa. The correlation between S4 and 
Ss, if positive as in the case of S 1, can be taken as a component 
of the Berry coordinate, with those trans-basal bonds destined to 
becoming axial bonds in the TBP lengthening as the angle between 
them increases, while the other pair of bonds shortens with a 
decrease in the angle contained by it. This type of distortion flies 
in the face of a structural truism which states that as two bonds 
shorten, so the angle between them increases for steric reasons. 
However, the "driving force" behind Berry intramolecular ex- 
change is certain to be energetic in nature, with the result that 
this truism is violated. S 4  (eSQP) manifests the positive corre- 
lation of S4 with S5 ( r  = 0.403) that is representative of the Berry 
coordinate, while S2 (fSQP) shows a negative correlation ( r  = 
-0 .352)  which, in fact, reflects the truism mentioned above. 
Consequently, it would seem as if the flattened square pyramid 
needs to elevate prior to any distortion along the Berry coordinate. 

1 .oo 
0.00 

-0.34 
0.05 
0.05 

1 .oo 
0.00 

-0.28 
-0.03 
0.03 

1 .00 
0.00 
0.12 
0.22 

-0.22 

1 .oo 
0.00 1 .oo 
0.68 0.03 1.00 
0.68 -0.03 0.71 1.00 

1 .oo 
0.00 1 .oo 

-0.05 0.05 1.00 
-0.05 -0.05 0.00 1.00 

1 .oo 
0.00 1 .oo 

-0.11 0.11 1.00 
-0 .11  -0.11 0.00 1.00 

Lastly, the correlations for the two latter clusters are both blocked 
according to symmetry, with no correlations between coordinates 
of different symmetry. 

Overall, therefore, the distortions identified for S-space as a 
whole have been retained on the subdivision into clusters. The 
major one, the glue factor, is associated with clusters S 2  (fSQP) 
and S4 (eSQP); the Berry distortion is associated with S1 (dTBP) 
and S 4  (eSQP) but not with S2 (fSQP). 

6. Summary. The clustering techniques employed in this 
study-nonhierarchical relocation clustering and hierarchical 
clustering using Ward's method-have been shown to yield es- 
sentially identical, robust clusters in the 12-dimensional defor- 
mation space of ML5 molecular fragments. They have revealed 
that the ML5 fragment is characterized by three archetypal ge- 
ometries: the TBP, the eSQP, and the fSQP. Cluster statistics 
indicate distortions suggesting a constant amount of bonding at  
the central metal atom in all three geometries, as well as distortions 
mirroring ligand substitution reactions. The Berry distortion is 
associated with both TBP and SQP conformations, and its relative 
importance in these clusters is therefore reduced as a consequence 
of the clustering, which separates the data into those close to TBP 
symmetry and those distoring away from it along a C, coordinate. 

The next paper examines these distortions in greater detail by 
using factor analysis. 
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